
P a g e 1 | 8

Vincent Delaroche

Founder of CAST

Executive Summary

In early 2023, generative AI captured the world’s imagination. Not only for its uncanny ability to ace

the Turing Test, but also for the myriad possible applications of this new technology. From advancing

medicine, to writing code, to finally sorting through all those archived emails.

Impressive as it is, generative AI is also prone to hallucinations, and it is as good as the content it is

fed. When it comes to generating software, the applicability of AI can be extremely useful. Still, the

context of a large codebase is beyond its reach due to limited working memory, among other reasons.

And when it comes to automated refactoring, modernization, cloud migration – AI by itself does not

meaningfully contribute outside of narrow, mechanical use cases addressing a small fraction of the

industry challenge.

The way that AI functions renders it impossible for the machine to gain a structural understanding of a

large, multi-million LOC enterprise software application or a complex embedded system in its entirety.

Although everyone is legitimately excited by the potential productivity gain for developers, we mustn’t

forget that a big chunk of the application development and maintenance budget of an enterprise is

spent on maintaining, adapting, and transforming existing systems. And we have learned that to send

a complex custom software system to the cloud with all its databases requires either refactoring

before the shift, or a lot of post-move optimization.

Enter Software Intelligence technology – a capability honed over many years of intensive R&D by

compiler, coding language and database structure specialists. Software Intelligence technology

enables a machine to understand any system holistically no matter how large. This technology reads

and understands database structure, end-to-end transactions, APIs, and reverse engineers the inner

 roun in ith So t are ntelli ence
 aking AI understand very large systems and

automate their modernization

https://www.linkedin.com/in/vincent-delaroche-cast/

P a g e 2 | 8

structure into a graph database that can be turned into a searchable blueprint for architects and dev

teams to get immediate answers to all kinds of technical questions. This capability on its own

eliminates a lot of time-consuming work when done manually,

and boosts the team’s ability to maintain, change, modernize

and extend the application. But the larger the system, the

harder it is for a human to grasp its entirety, even if the inner

workings are delivered in the most navigable and consumable

visualization. The human effort for interpreting the “as is” and

designing the target architecture for AWS, Azure, GCP, hybrid

or on premise is not neglectable.

This is where the coupling of AI and Software Intelligence

turns into a wonder drug. This combination uniquely enables

architects to see the “as is” and quickly visualize multiple “to be” scenarios that can put

modernization or even bug fixing on steroids.

When So t are ntelli ence Meets

According to Gartner, the limiting factor to deal with large complex systems is cognitive fatigue,

stemming from limits on the cognitive load that we’re capable of handling. The factors driving up the

cognitive load are size, complexity and interdependencies in enterprise software systems1.

How do we quickly add the requisite context

to turn GenAI into a useful tool inside the

intricate snowflake world of complex

software systems? Thankfully, today we

have mature technology that seems to have

almost been built for this purpose. Software

Intelligence technology has developed and

modernized over the last half dozen years to

analyze the largest and most complex of

enterprise systems. This capability deserves

a quick description.

Software Intelligence technology is a software engine that reads the code, database structure scripts

and all related software artifacts very much like an elite software engineer would read it. This engine

will understand the semantics of the target system, what does it “do”2. The software intelligence

engine also reads database structures, coding frameworks, APIs, and from there automatically

extracts accurate, deterministic knowledge of the target system. It is a synthetic brain that can read

40k LOC per minute and actually understand grammar, meaning, sense of the words being used in

programming languages, and store all this intel into a massive knowledgebase.

Large custom software systems are made of stacks of technologies communicating through

synchronous or asynchronous mechanisms, some native to the technology and some added using

external frameworks. Holistic understanding means mapping out each technology, interconnections

within the technology, with other technologies, and with multiple databases.

1 https://www.gartner.com/en/webinar/489110/1145545
2 https://en.wikipedia.org/wiki/Software_intelligence

Fi ure 1 - Contributors to evelopers' co nitive ati ue

So t are ntelli ence

technolo y acts as a

synthetic brain that rea s

40 KLOC per minute an

buil s real un erstan in

o the system into a

kno le e base

https://www.gartner.com/en/webinar/489110/1145545
https://en.wikipedia.org/wiki/Software_intelligence

P a g e 3 | 8

Mapping out a single technology is well understood and relatively easy with traditional static analysis.

Mapping the entire application requires understanding the impact of frameworks or libraries (e.g.,

persistence frameworks such as Hibernate or Entity Framework abstract the communication with a

relational database). The analysis needs to decipher the abstractions to “draw the link” between the

calling function and the inserted data. From a practical standpoint, it means studying the mechanism

of every framework and then what each API does. That there are tens of frameworks for each

technology also means an extensive reference base of all the frameworks and how to “decipher”

them. The same for inter-component communication protocols. For example, gRPC and REST are

two frequent choices to build API based applications and they can coexist in the same application.

And if their means are identical, their implementation is obviously different, hence requiring dedicated

analyzers.

On top of that we add a sophisticated analysis of the variables detected in the code, plus analysis of

the data model, a pinch of custom AI, plus some secret sauce derived from $250m R&D delivered

over the past 30 years by bright minds from the world’s top computer science research institutions.

Fi ure 2 - So t are ntelli ence as Di ital T in o Complex System

The beauty of this technology in the context of AI is that Software Intelligence can “feed” the AI with

contextual and technical intel about those thousands of existing custom software components that

stand as the brain of the business and competitive weapon of the G2000. From there AI will generate

code to improve or change those systems. And inversely, AI can help Software Intelligence outputs to

become much easier to consume, become more prescriptive, and be turned into business benefits.

Software Intelligence technology can analyze millions of LOC to understand what the thousands of

components do as they interact with each other. This analysis yields a live knowledgebase that

stands as a ‘digital twin’ of the target custom software system.

For a typical complex and large custom-built application, such

a knowledgebase contains datapoints that describe all the

interconnections between variables, inherited objects, data

elements, services, APIs, and frameworks. A 4 million LOC

mainframe application will yield a knowledgebase of 150k

objects and 400k links between those objects. A similar size

Java or C++ system will have 460k objects and over 2 million

links. This is a tremendous dataset of patterns by which an AI

So t are ntelli ence can

 roun ith contextual

intel about the 1000’s o

existin custom

components

P a g e 4 | 8

can be trained on the contextual structure of an application. This dataset can also guide the LLM so

that the training on these XXL custom applications can be far more efficient in terms of the required

compute time and resources.

 ccelerate So t are Un erstan in

Though Software Intelligence by itself is a great help to developers trying to understand and navigate

a complex system, when combined with AI this capability can be enhanced in a number of ways, with

several emerging use cases.

Use Case 1: Explain so t are components ‘in context’.
One of the ways GenAI can nicely complement Software Intelligence is by providing what we could

call the “last mile” of information. Software Intelligence technology excels at extracting and presenting

the inner machinery of a complex software system in context. GenAI is great at understanding and

translating 10-100 lines of code and comments that form each individual element in a component.

Combining the two – the structural view of the inner workings with the textual explanation, in the

same display, accelerates a developer’s navigation through a complex software system. This lowers

the constraints to learning a new system even when written in technologies and languages not

mastered by the developer doing the research. See Figure 3, below for illustration.  

Fi ure 3 – Provi in a synthesis o hat each co e component is oin

Use Case 2: Explain a hole so t are system

This use case can be seen as an extension of the previous one at the whole software system level.

The main challenges here are to overcome the prompt limit and the lack of domain-specific

knowledge about the bespoke software system. Using a loop mechanism guided by the Software

Intelligence outputs stored in the knowledgebase, this use case leverages the AI model to provide

concise and readable explanations at different levels of abstraction.

1. Software Intelligence technology can be used to “clean up” the components, much like the

feature engineering work done by data scientists. It removes all the nonrelevant elements

P a g e 5 | 8

from the components, such as accessors for variables, constructors, and other technical

pieces of code that can create noise and thereby limit the accuracy and focus of the AI’s

outputs.

2. Each cleaned component can be submitted to the AI, along with context-specific data coming

from the Software Intelligence engine, like the dependencies on other components, the types

of components, the nature of interactions, which data structures are accessed, and the

naming conventions observed for each layer of that application. This kind of context creates a

clear and accurate explanation that will be stored for further processing and/or developer

navigation.

3. Once all the components are explained, the structural understanding provided by the

Software Intelligence engine can ground the GenAI to explain each functional transaction.

This can manifest as a list of all the components in the transaction, with a synthesis of their

individual descriptions explaining the whole transaction. Transactions can then be aggregated

in the same way to explain complete modules, all the way up to the entire application.

Figure 4 - Using chat to query the Software Intelligence knowledge base using natural language

With each intermediate explanation stored alongside its Software Intelligence counterpart, the result

is an enriched knowledgebase of both textual and structural explanations of the inner mechanics of a

whole software system. Then, using GenAI conversational capabilities, the “consumer” can ask, for

instance, “how does the persistence layer, interfacing through middleware and a database technically

work?” or “what‘s going to happen if I change this or that in this component” or again, things like “give

me all components that deal with customer data.” It’s worth noting these are all questions the

Software Intelligence could answer by navigating the blueprint visualization of the software system,

but the UX is much easier if accessed through natural language chat. This way, Software Intelligence

plus AI stands as the S E of the business-critical applications. The synthetic brain that can augment

the knowledge of the human S Es, if any, while keeping and continuously enriching the strategic

knowledge in-house when S Es resign or switch roles.

 ccelerate pplication Trans ormation

Beyond navigating and understanding the legacy codebase, the combination of AI with Software

Intelligence can enable specific actions that would otherwise be very manual.

P a g e 6 | 8

Use Case 3: Help trans orm systems
From this point, Software Intelligence combined with AI may soon help to maintain, transform,

modernize, partially automate application refactoring, and to fix complex multi-layer flaws. Based on

the holistic understanding described in the above use case (Use Case 2), Software Intelligence tech

brings a deep understanding of the “as is” architecture. AI on the other hand can be trained about

options and patterns for the “to be’ architecture. The combination of the two results is a promising

way to automate modernization before or after a journey from on-prem to cloud.

While it is still in research phases at the time of writing, one of the major LLM providers appears open

to finetuning its own LLM based on Software Intelligence outputs. This would open a highly promising

door for the industry, especially in the area of modernization for cloud migration or optimization after a

lift-and-shift. We saw above that Software Intelligence tech can identify and list all the changes

required in a given codebase to migrate a complex custom application to any of the major cloud

platforms, or to leverage cloud-native services. Changes like cloud maturity blockers (code patterns

that conflict with the targeted cloud platform) or structural flaws potentially damaging to the

application once moved to the target cloud. An LLM can then be finetuned with the list of those

changes, and once done, automatically generate optimized code for the targeted cloud platform.

Fi ure 5 – With So t are ntelli ence or pplication Trans ormation

Use Case 4: Help to fix an ensure inte rity o ne co e
Software intelligence can also check the resiliency efficiency and security of the code produced by

GenAI. Not in the way component-level code quality tools would do, but in accordance with the very

demanding ISO 5055 system level structural quality framework3. This capability helps ensure

architectural integrity of each component and consistency of all interdependent components between

them.

There is a lot of excitement about raising developer productivity by having AI generate new code, but

by definition that code is unknown, and its quality should be treated as suspect. With higher volumes

of new code, the need to automate integrity checks becomes greater. Also, with the pace of

3 https://www.it-cisq.org/standards/code-quality-standards

https://www.it-cisq.org/standards/code-quality-standards/

P a g e 7 | 8

components being added by the same number of developers, using Software Intelligence to build

understanding of the resulting system structure becomes more important.

Use Case 5: Functional ecomposition o le acy co e
Lastly, the holy grail for Software Intelligence – developing a functional understanding of a big system.

Ever since we developed the Software Intelligence capability, excited customers have asked whether

this can give them a functional decomposition. For instance, to show all the components that would

be affected by a change imposed by a new US GAAP rule, or by changing a pricing structure or

implementing a new way to detect fraudulent transactions.

Fi ure 6 – Creatin a unctional un erstan in o the system architecture

Now, with the addition of GenAI that can read plain English comments in the code, cluster

components and variables by the natural-language significance of their names and look at those

name clusters in the context of end-to-end transactions, it is a different ballgame. The AI is able to

add a layer of functional understanding to the Software Intelligence

knowledgebase. This has an effect on several of the preceding use

cases. For instance, in Use Case 4, you will then be able to query

the knowledgebase based on the function components served. So

that would be questions like “Please give me all components that

help calculate customer pricing.” The true promise of functional

software intelligence is starting to emerge.

Conclusion

The LLM behind GenAI allows Software Intelligence tech to create more intel from the massive

amounts of metadata that Software Intelligence produces. This in turn allows developers and

architects to gain more actionable and easier to consume insights. Reciprocally, Software Intelligence

output can provide the context GenAI must have in order to be relevant inside of vast, complex,

interrelated, data intensive and heterogenous code. In summary, Software Intelligence helps

upstream by building system-level context into the model and minimizing the risk of well-known AI

hallucinations. It also helps downstream to understand and master the hundreds or thousands of new

components.

The true promise o

 unctional So t are

 ntelli ence is startin

to emer e

P a g e 8 | 8

 uthor an ckno le ements

Nope, this paper was not generated by AI… but it would not exist without a little help from my

colleagues and friends.

Vincent Delaroche

A passionate entrepreneur and an industry thought leader, Vincent, with a

team of spirited CAST-mates, is pioneering a whole new market category,

dubbed “Software Intelligence”. Vincent has built CAST from a French-garage

startup to a global player operating in 9 geographies on 3 continents, investing

along the way $250M+ in R&D, to deliver the most advanced 'Imaging system

for software'.

Today, surrounded by passionate believers, including some of the most distinguished world leaders in

technology, supported by strong, loyal and disruptive talent and a serious ecosystem of go-to-market

partners, including BCG, E&Y, Accenture, IBM, Microsoft, Google Cloud, AWS, Vincent aims to have

CAST become the undisputed Software Intelligence category king within the decade.

Contributors

Philippe Emmanuel Douziech, a published expert in AI and Software Intelligence. Philippe is the

Principal Scientist at CAST Research Labs, having studied at Mines Paris - PSL, one of the most

prestigious engineering schools in Europe.

Olivier Bonsignour, CAST’s global head of R&D for 25 years and counting, a longstanding colleague

and friend. Prior to joining CAST, Olivier was running IT for an advanced research division of the

French inistry of Defense. Olivier holds a master’s degree in engineering and computer science

from the National Institute of Applied Sciences (INSA).

Lev Lesokhin, an old friend and reasonably smart guy, who holds a graduate degree from MIT and

serves as a board member for the Consortium for Information and Software Quality (CISQ), the .org

co-founded by the Software Engineering Institute at Carnegie Mellon University and the Object

Management Group. The work at CISQ eventually led to the ISO 5055 standard for software

structural quality.

