

P a g e 1 | 8

Grounding AI with Software Intelligence
How to make AI understand very large custom systems and automate their modernization

Executive Summary

In early 2023, generative AI captured the world’s imagination. Not only for its uncanny ability to ace the

Turing Test, but also for the myriad possible applications of this new technology. From advancing medicine,

to writing code, to finally sorting through all those archived emails.

Impressive as it is, generative AI is also prone to hallucinations, and it is as good as the content it is fed.

When it comes to generating software, the applicability of AI can be extremely useful. Still, the context of a

large codebase is beyond its reach due to limited working memory, among other reasons. And when it

comes to automated refactoring, modernization, cloud migration – generative AI by itself does not

meaningfully contribute outside of narrow, mechanical use cases addressing a small fraction of the

industry challenge.

The way that AI functions renders it impossible for the machine to gain a structural understanding of a

large, multi-million LOC enterprise software application or a complex embedded system in its entirety.

Although everyone is legitimately excited by the potential productivity gain for developers, we mustn’t

forget that a big chunk of the application development and maintenance budget of an enterprise is spent

on maintaining, adapting, and transforming existing systems. And we have learned that to send a complex

custom software system to the cloud with all its databases requires either refactoring before the shift, or a

lot of post-move optimization.

Enter Software Intelligence technology – a capability honed over many years of intensive R&D by compiler,

coding language and database structure specialists. Software Intelligence technology enables a machine to

understand any system holistically no matter how large. This technology reads and understands database

structure, end-to-end transactions, APIs, and reverse engineers the inner structure into a graph database

that can be turned into a searchable blueprint for architects and dev teams to get immediate answers to all

kinds of technical questions. This capability on its own eliminates a lot of time-consuming work when done

manually, and boosts the team’s ability to maintain, change, modernize and extend the application. But

the larger the system, the harder it is for a human to grasp its entirety, even if the inner workings are

delivered in the most navigable and consumable visualization. The human effort involved in interpreting

the “as is” and designing the target architecture for AWS, Azure, GCP, hybrid or on premise is not

neglectable.

This is where the coupling of AI and Software Intelligence turns into a wonder drug. This combination

uniquely enables architects to see the “as is” and quickly visualize multiple “to be” scenarios that can put

modernization or even bug fixing on steroids.

When Software Intelligence Meets AI

According to Gartner, the limiting factor to deal with large complex systems is cognitive fatigue, stemming
from limits on the cognitive load that we’re capable of handling. The factors driving up the cognitive load
are size, complexity and interdependencies in enterprise software systems1.

1 https://www.gartner.com/en/webinar/489110/1145545

https://www.gartner.com/en/webinar/489110/1145545

P a g e 2 | 8

How do we quickly add the requisite
context to turn GenAI into a useful tool
inside the intricate snowflake world of
complex software systems? Thankfully,
today we have mature technology that
seems to have almost been built for this
purpose. Software Intelligence technology
has developed and modernized over the
last half dozen years to analyze the largest
and most complex of enterprise systems.
This capability deserves a quick description.

Software Intelligence technology is a software engine that reads the code, database structure scripts and
all related software artifacts very much like an elite software engineer would read it. This engine will
understand the semantics of the target system, what does it “do”2. The software intelligence engine also
reads database structures, coding frameworks, APIs, and from there automatically extracts accurate,
deterministic knowledge of the target system. It is a synthetic brain that can read 40k LOC per minute and
actually understand grammar, meaning, sense of the words being used in programming languages, and
store all this intel into a massive knowledgebase.

Large custom software systems are made of stacks of technologies communicating through synchronous
or asynchronous mechanisms, some native to the technology and some added using external frameworks.
Holistic understanding means mapping out each technology,
interconnections within the technology, with other technologies,
and with multiple databases.

Mapping out a single technology is well understood and relatively
easy with traditional static analysis. Mapping the entire application
requires understanding the impact of frameworks or libraries (e.g.,
persistence frameworks such as Hibernate or Entity Framework
abstract the communication with a relational database). The analysis
needs to decipher the abstractions to “draw the link” between the
calling function and the inserted data. From a practical standpoint, it
means studying the mechanism of every framework and then what each API does. That there are tens of
frameworks for each technology also means an extensive reference base of all the frameworks and how to
“decipher” them. The same for inter-component communication protocols. For example, gRPC and REST
are two frequent choices to build API based applications and they can coexist in the same application. And
if their means are identical, their implementation is obviously different, hence requiring dedicated
analyzers.

On top of that we add a sophisticated analysis of the variables detected in the code, plus analysis of the
data model, a pinch of custom AI, plus some secret sauce derived from $250m R&D delivered over the
past 30 years by bright minds from the world’s top computer science research institutions.

2 https://en.wikipedia.org/wiki/Software_intelligence

Figure 2 - Contributors to developers' cognitive fatigue

Software Intelligence

technology acts as a

synthetic brain that reads

40 KLOC per minute and

builds real understanding

of the system into a

knowledge base

https://en.wikipedia.org/wiki/Software_intelligence

P a g e 3 | 8

Figure 3 - Software Intelligence as Digital Twin of Complex System

The beauty of this technology in the context of AI is that Software Intelligence can “feed” the AI with
contextual and technical intel about those thousands of existing custom software components that stand
as the brain of the business and competitive weapon of the G2000. From there AI will generate code to
improve or change those systems. And inversely, AI can help Software Intelligence outputs to become
much easier to consume, become more prescriptive, and be turned into business benefits.

Software Intelligence technology can analyze millions of LOC to understand what the thousands of

components do as they interact with each other. This analysis yields a live knowledgebase that stands as a

‘digital twin’ of the target custom software system. For a typical

complex and large custom-built application, such a

knowledgebase contains datapoints that describe all the

interconnections between variables, inherited objects, data

elements, services, APIs, and frameworks. A 4 million LOC

mainframe application will yield a knowledgebase of 150k

objects and 400k links between those objects. A similar size Java or C++ system will have 460k objects and

over 2 million links. This is a tremendous dataset of patterns by which an AI can be trained on the

contextual structure of an application. This dataset can also guide the LLM so that the training on these

XXL custom applications can be far more efficient in terms of required compute time and resources.

Accelerate Software Understanding

Though Software Intelligence by itself is a great help to developers trying to understand and navigate a

complex system, when combined with AI this capability can be enhanced in a number of ways, with several

emerging use cases.

Use Case 1: Explain software components ‘in context’.
One of the ways GenAI can nicely complement Software Intelligence is by providing what we could call the
“last mile” of information. Software Intelligence technology excels at extracting and presenting the inner
machinery of a complex software system in context. GenAI is great at understanding and translating 10-
100 lines of code and comments that form each individual element in a component. Combining the two –
the structural view of the inner workings with the textual explanation, in the same display, accelerates a
developer’s navigation through a complex software system. This lowers the constraints to learning a new

Software Intelligence can

ground AI with contextual

intel about the 1000’s of

existing custom components

P a g e 4 | 8

system even when written in technologies and languages not mastered by the developer doing the
research. See Figure 4, below for illustration.  

Figure 4 – Providing a synthesis of what each code component is doing

Use Case 2: Explain a whole software system
This use case can be seen as an extension of the previous one at the whole software system level. The
main challenges here are to overcome the prompt limit and the lack of domain-specific knowledge about
the bespoke software system. Using a loop mechanism guided by the Software Intelligence outputs stored
in the knowledgebase, this use case leverages the AI model to provide concise and readable explanations
at different levels of abstraction.

1. Software Intelligence technology can be used to “clean up” the components, much like the feature
engineering work done by data scientists. It removes all the nonrelevant elements from the
components, such as accessors for variables, constructors, and other technical pieces of code that
can create noise and thereby limit the accuracy and focus of the AI’s outputs.

2. Each cleaned component can be submitted to the AI, along with context-specific data coming from
the Software Intelligence engine, like the dependencies on other components, the types of
components, the nature of interactions, which data structures are accessed, and the naming
conventions observed for each layer of that application. This kind of context creates a clear and
accurate explanation that will be stored for further processing and/or developer navigation.

3. Once all the components are explained, the structural understanding provided by the Software
Intelligence engine can ground the GenAI to explain each functional transaction. This can manifest
as a list of all the components in the transaction, with a synthesis of their individual descriptions
explaining the whole transaction. Transactions can then be aggregated in the same way to explain
complete modules, all the way up to the entire application.

P a g e 5 | 8

Figure 5 - Using chat to query the Software Intelligence knowledge base using natural language

With each intermediate explanation stored alongside its Software Intelligence counterpart, the result is an

enriched knowledgebase of both textual and structural explanations of the inner mechanics of a whole

software system. Then, using GenAI conversational capabilities, the “consumer” can ask, for instance, “how

does the persistence layer, interfacing through middleware and a database technically work?” or “what‘s

going to happen if I change this or that in this component” or again, things like “give me all components

that deal with customer data.” It’s worth noting these are all questions the Software Intelligence

could answer by navigating the blueprint visualization of the software system, but the UX is much easier if

accessed through natural language chat. This way, Software Intelligence plus AI stands as the SME of the

business-critical applications. The synthetic brain that can augment the knowledge of the human SMEs, if

any, while keeping and continuously enriching the strategic knowledge in-house when SMEs resign or

switch roles.

Accelerate Application Transformation

Beyond navigating and understanding the legacy codebase, the combination of AI with Software
Intelligence can enable specific actions that would otherwise be very manual.

Use Case 3: Help transform systems
From this point, Software Intelligence combined with AI may soon help to maintain, transform, modernize,
partially automate application refactoring, and to fix complex multi-layer flaws. Based on the holistic
understanding described in the above use case (Use Case 2), Software Intelligence tech brings a deep
understanding of the “as is” architecture. AI on the other hand can be trained about options and patterns
for the “to be’ architecture. The combination of the two results is a promising way to automate
modernization before or after a journey from on-prem to cloud.

While it is still in research phases at the time of writing, one of the major LLM providers appears open to
finetuning its own LLM based on Software Intelligence outputs. This would open a highly promising door
for the industry, especially in the area of modernization for cloud migration or optimization after a lift-
and-shift. We saw above that Software Intelligence tech can identify and list all the changes required in a
given codebase to migrate a complex custom application to any of the major cloud platforms, or to
leverage cloud-native services. Changes like cloud maturity blockers (code patterns that conflict with the
targeted cloud platform) or structural flaws potentially damaging to the application once moved to the

P a g e 6 | 8

target cloud. An LLM can then be finetuned with the list of those changes, and once done, automatically
generate optimized code for the targeted cloud platform.

Figure 1 – AI With Software Intelligence for Application Transformation

Use Case 4: Help to fix and ensure integrity of new code
Software intelligence can also check the resiliency efficiency and security of the code produced by GenAI.
Not in the way component-level code quality tools would do, but in accordance with the very demanding
ISO 5055 system level structural quality framework3. This capability helps ensure architectural integrity of
each component and consistency of all interdependent components between them.

There is a lot of excitement about raising developer productivity by having AI generate new code, but by
definition that code is unknown, and its quality should be treated as suspect. With higher volumes of new
code, the need to automate integrity checks becomes greater. Also, with the pace of components being
added by the same number of developers, using Software Intelligence to build understanding of the
resulting system structure becomes more important.

Use Case 5: Functional decomposition of legacy code
Lastly, the holy grail for Software Intelligence – developing a functional understanding of a big system.
Ever since we developed the Software Intelligence capability, excited customers have asked whether this
can give them a functional decomposition. For instance, to show all the components that would be
affected by a change imposed by a new US GAAP rule, or by changing a pricing structure or implementing
a new way to detect fraudulent transactions.

3 https://www.it-cisq.org/standards/code-quality-standards/

https://www.it-cisq.org/standards/code-quality-standards/

P a g e 7 | 8

Figure 2 – Creating a functional understanding of the system architecture

Now, with the addition of GenAI that can read plain English comments in the code, cluster components
and variables by the natural-language significance of their names and look at those name clusters in the
context of end-to-end transactions, it is a different ballgame. The AI is able to add a layer of functional
understanding to the Software Intelligence knowledgebase. This has an
effect on several of the preceding use cases. For instance, in Use Case 4,
you will then be able to query the knowledgebase based on the function
components served. So that would be questions like “Please give me all
components that help calculate customer pricing.” The true promise of
functional software intelligence is starting to emerge.

Conclusion

The LLM behind GenAI allows Software Intelligence tech to create more intel from the massive amount of
metadata that Software Intelligence produces. This in turn allows developers and architects to gain more
actionable and easier to consume insights. Reciprocally, Software Intelligence output can provide the
context GenAI must have in order to be relevant inside of vast, complex, interrelated, data intensive and
heterogenous code. In summary, Software Intelligence helps upstream by building system-level context
into the model and minimizing the risk of well-known AI hallucinations. It also helps downstream to
understand and master the hundreds or thousands of new components.

The true promise of

functional Software

Intelligence is

starting to emerge

P a g e 8 | 8

Author and Acknowledgements

Nope, this paper was not generated by AI… but it would not exist without a little help from my colleagues
and friends.

Vincent Delaroche
A passionate entrepreneur and an industry thought leader, Vincent, with a team of
spirited CAST-mates, is pioneering a whole new market category, dubbed
“Software Intelligence”. Vincent has built CAST from a French-garage startup to a
global player operating in 9 geographies on 3 continents, investing along the way
$250M+ in R&D, to deliver the most advanced 'Imaging system for software'.

Today, surrounded by passionate believers, including some of the most

distinguished world leaders in technology, supported by strong, loyal and disruptive talent and a serious
ecosystem of go-to-market partners, including BCG, E&Y, Accenture, IBM, Microsoft, Google Cloud, AWS,
Vincent aims to have CAST become the undisputed Software Intelligence category king within the decade.

Contributors
Philippe Emmanuel Douziech, a published expert in AI and Software Intelligence. Philippe is the Principal
Scientist at CAST Research Labs, having studied at Mines Paris - PSL, one of the most prestigious
engineering schools in Europe.

Olivier Bonsignour, CAST’s global head of R&D for 25 years and counting, a longstanding colleague and
friend. Prior to joining CAST, Olivier was running IT for an advanced research division of the French
Ministry of Defense. Olivier holds a master’s degree in engineering and computer science from the
National Institute of Applied Sciences (INSA).

Lev Lesokhin, an old friend and reasonably smart guy, who holds a graduate degree from MIT and serves
as a board member for the Consortium for Information and Software Quality (CISQ), the .org co-founded
by the Software Engineering Institute at Carnegie Mellon University and the Object Management Group.
The work at CISQ eventually led to the ISO 5055 standard for software structural quality.

